skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bifano, Thomas_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite plenty of static and dynamic mechanical measurements and modeling for bulk polydimethylsiloxane (PDMS) specimens, a notable gap exists in comprehensively understanding the dynamic mechanics under large cycle, low strain conditions, especially for microscale samples. This study integrates tensile testing and nanoindentation techniques to compare dynamic mechanical response for bulk PDMS samples and μ‐pillars. The results from cyclic tensile testing, which involved up to 10,000 cycles at a strain range of 10%–20%, indicate a stabilization of energy dissipation rate after the initial 25 cycles. This attributes to stress relaxation and strain hardening, validating by rapid dual‐phase exponential decay in maximum stress, coupled with an incremental increase in elastic modulus. In comparison to tensile testing, μ‐pillars exhibited a 0.82% reduction in stiffness, stabilizing ~600th cycle. Concurrently, there was an approximately twofold increase in approaching distance during the initial 120 cycles, and an approximately fourfold increase in dissipated energy over the first 80 cycles, before reaching a plateau. This lagging hysteresis effect attributes to the distribution of the resultant force, including top tension, bottom compression, and base tilt. Overall, this study illuminates temporal mechanical deformations in PDMS under two application scenarios, enhancing our understanding of PDMS mechanical behavior. 
    more » « less